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RESUMO 

 

A malária é uma doença infecciosa causada por protozoários do gênero Plasmodium ssp. e 

apesar do sucesso no combate dessa doença, em 2020 foram reportados 241 milhões de casos 

e 627 mil óbitos. É de extrema importância a descoberta de novos antimaláricos que, além de 

eficientes, tenham mecanismos de ação diferentes daqueles já utilizados para evitar 

mecanismos de resistência cruzada. Para isso, o objetivo deste trabalho é descobrir potenciais 

inibidores da enzima fosfatidilinositol-4-quinase do tipo III ß do Plasmodium falciparum 

(PfPI4KIIIß). Essa enzima é um alvo macromolecular atrativo devido a sua importância no 

desenvolvimento do parasito e representa um novo mecanismo de ação diferente dos 

antimaláricos usuais. A partir da estrutura tridimensional da PfPI4KIIIß e de ligantes das suas 

proteínas homólogas humanas, integramos técnicas de docagem molecular e triagem virtual 

com métodos de aprendizado de máquina. Assim, visamos identificar e classificar potenciais 

moléculas capazes de interagir com o seu sítio ativo da PfPI4KIIIß. Em vista disso, construímos 

um modelo da estrutura tridimensional da enzima através do AlphaFold colab notebook, 

recuperamos moléculas com atividade conhecida contra enzimas homólogas da PI4K no banco 

de dados ChEMBL e moléculas com atividade desconhecida contra esse alvo pelo banco de 

dados ZINC. Para iniciar o estudo, validamos a estrutura por alinhamento estrutural com a 

enzima PI4K humana, utilizando a métrica pLDDT e simulação de dinâmica molecular. Apesar 

da docagem molecular ter sido validada pela redocagem do ligante cristalográfico da enzima 

hPI4K, a abordagem aplicada a triagem virtual não foi validada. Diante disso, foram treinados 

modelos de aprendizado de máquina para predizer compostos potentes contra as proteínas 

homólogas humanas. Esses tiveram uma acurácia de aproximadamente 75%, vislumbrando a 

possibilidade de realizar a triagem virtal de compostos com atividade desconhecida contra essas 

proteínas.  

 

Palavras-chave: Malária. PI4K. In sílico. 
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1 INTRODUÇÃO 
 

A malária é uma doença infecciosa causada por protozoários do gênero Plasmodium 

ssp. e transmitida aos humanos pela picada de fêmeas do mosquito Anopheles spp. Apesar do 

sucesso significativo do combate à essa doença nas duas últimas décadas, em 2020, quase 

metade da população mundial corria o risco de contrair a malária e houve uma estimativa de 

241 milhões de casos e 627.000 óbitos devido à malária. (1) 

A persistência desses quadros endêmicos tem como principais causas a resistência do 

mosquito à inseticidas e o surgimento de parasitos resistentes aos antimaláricos mais utilizados, 

incluindo as terapias recomendadas pela Organização Mundial da Saúde (OMS) baseadas na 

combinação de derivados de artemisinina (ACTs). (2–5) Portanto, torna-se de extrema 

importância a descoberta de novos fármacos antimaláricos inovadores que evitem os 

mecanismos de resistência adquiridos, possuindo modos de ação diferentes daqueles 

convencionais. (6-7) 

Devido ao seu papel central nas vias metabólicas essenciais aos parasitos, as enzimas 

são alvos biológicos importantes para os estudos de planejamento de fármacos. (8-9) Tendo em 

vista a resistência à medicamentos, é interessante a busca por alvos ainda pouco explorados do 

P. falciparum, parasito responsável pela forma mais letal da doença (1,5), que direcionem a 

descoberta de moléculas bioativas com mecanismos de inibição inovadores.  

Dentre esses alvos, destaca-se a proteína quinase lipídica fosfatidilinositol-4-OH 

quinase tipo III beta do P. falciparum (PfPI4KIII𝛽) que, além de ser uma enzima essencial ao 

desenvolvimento do parasito em diferentes estágios, pode ser inibida por moléculas pequenas 

(ligantes), como os derivados imidazopirazinícos. (10-11) Os ortólogos de PI4K fosforilam os 

lipídios do tipo fosfoinositídeos, que em sua forma difosfatada torna-se um importante 

regulador de diversas vias de sinalização celular, incluindo o processo de citocinese (12-13) 

Atualmente, existe um inibidor seletivo da PfPI4K, denominado MMV3900048, que se 

encontra em estudos clínicos de fase 2. (6) 

Nesse contexto, métodos computacionais em bioinformática associados ao 

planejamento de fármacos são altamente promissores, visto que aceleram, direcionam e 

contribuem significativamente desde a identificação de hits até a otimização de leads. (14) 

Dentre as estratégias de planejamento, destacam-se os métodos de SBDD (do inglês, Structure-

Based Drug Design), que se baseiam no conhecimento da estrutura tridimensional de alvos 

biológicos, como proteínas ou ácidos nucleicos, adquirido por técnicas de cristalografia, 

ressonância magnética nuclear (RMN), criomicroscopia eletrônica (Cryo-EM), modelagem por 
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homologia ou de aprendizado de máquina. Um dos principais métodos SBDD é a docagem 

molecular, uma estratégia que realiza a previsão do modo de ligação entre o alvo molecular e 

seu ligante, que, em conjunto com a triagem virtual de várias moléculas de um banco de dados, 

permite a seleção de compostos com atividade biológica promissora. (9) 

A partir da estrutura tridimensional do alvo, é possível integrar técnicas de docagem 

molecular e triagem virtual com métodos de aprendizagem de máquina para realizar a predição 

de propriedades físico-químicas, afinidade de ligação, seletividade e classificação de moléculas. 

(14–16) No contexto de classificação de moléculas na triagem virtual, a abordagem clássica de 

aprendizado de máquina consiste em treinar modelos computacionais utilizando-se como 

entrada um conjunto de complexos proteína-ligante já conhecidos que serão utilizados na 

classificação de atividade biológica de compostos desconhecidos. (17)  

Uma segunda estratégia muito utilizada para a descoberta de novos hits é através dos 

métodos de LBDD (do inglês, Ligand-Based Drug Design). Esses, por sua vez, baseiam-se na 

modelagem e análise computacional de ligantes conhecidos, cujas informações estruturais e 

atividade biológica podem ser encontrados em bancos de dados públicos. Dessa forma, é 

possível correlacionar esses dados e realizar uma triagem virtual em larga escala para recuperar 

compostos promissores. Dentre tais técnicas, as principais são: modelos farmacofóricos, QSAR 

(do inglês, Quantitative Structure Activity Relationship) e cálculos de similaridade baseados 

em propriedades físico-químicas das moléculas. (18) 

Portanto, considerando a necessidade de encontrar novos candidatos a inibidores dos 

parasitos resistentes aos medicamentos convencionais, esse projeto baseou-se no estudo da 

enzima PfPI4KIII𝛽 do P. falciparum por meio de técnicas de modelagem por homologia. Além 

disso, também integramos a estratégia de LBDD com técnicas de aprendizado de máquina para 

construir modelos capazes de predizer possíveis inibidores dessa proteína a partir de 

informações de moléculas que conhecidamente interagem com homólogas humanas dessa 

enzima. Dessa forma, além de analisar e estudar a estrutura de um alvo ainda pouco explorado, 

propomos a descoberta de novos potenciais inibidores para a PfPI4KIII𝛽 cujo mecanismo de 

ação seja inovador e capaz de trazer luz ao problema de resistência atualmente enfrentado com 

os tratamentos convencionais. Finalmente, será sugerida a validação experimental de potenciais 

inibidores da enzima PfPI4KIII𝛽. 
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2 MATERIAIS E MÉTODOS 

 

2.1 Visão geral do projeto 

 

Para encontrar potenciais inibidores da enzima PfPI4KIII𝛽, foram planejadas duas 

triagens virtuais em larga escala concomitantes. A Figura 1 (A) mostra a primeira abordagem, 

que se baseou em modelos de aprendizado de máquina, os quais foram treinados a partir de dois 

tipos de fingerprints, Extended Connectivity Fingerprint (ECFP) (19) e fingerprints de 

interação. (20) Já a segunda, representada pela Figura 1 (B), se baseia apenas no ranqueamento 

obtido com a docagem molecular entre as moléculas e a enzima PfPI4KIII𝛽 utilizando-se 

diferentes funções de pontuação. 

A predição da potência dos compostos contra a proteína de interesse vai depender da 

informação contida nos fingerprints, que serão os atributos utilizados pelos métodos de 

aprendizado de máquina. Esses fingerprints são vetores que representam a estrutura química ou 

propriedades que definem das moléculas em estudo. (17) No caso dos ECFP, temos a 

informação estrutural e dos grupos químicos da molécula determinada por funções de simetria 

circular. (17,19) Já os fingerprints de interação carregam a informação das interações 

intermoleculares entre a molécula analisada e os resíduos do sítio de ligação da proteína que 

ela interage, dependendo da docagem molecular. (21) Dessa forma, temos dois tipos de 

informações diferentes para realizar o aprendizado de máquina e poder escolher o modelo com 

melhor capacidade de predição. 
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A  

 
B  

 
Figura 1 - (A) Fluxograma representando a triagem virtual baseada em modelos de aprendizado de máquina para 

predizer potenciais inibidores da enzima PfPI4KIII𝛽. (B) Esquema simplificado das etapas necessárias 

para realizar a triagem virtual em larga com base no ranqueamento obtido através da docagem molecular 

entre os ligantes e a enzima PfPI4KIII𝛽. 

Fonte: Elaborada pela autora. 

 

 
 

2.2 Obtenção do modelo estrutural da enzima PfPI4KIII𝛽 

 

Inicialmente, verificamos a existência de um modelo estrutural da proteína PfPI4KIII𝛽 

disponível nos bancos de dados SWISS-MODEL (19) e no ModBase (23), obtidos via 

modelagem comparativa de alta resolução, e no banco de dados AlphaFoldDB (24), obtido 

através de um modelo de aprendizado de máquina baseado em redes neurais. Além disso, como 

as estruturas encontradas possuem regiões de baixa confiabilidade, também foi predita a 

estrutura dessa enzima através do AlphaFold colab notebook (24) com modificações na 



11 

 

 

sequência primária para obter um modelo melhor a fim de aplicar as técnicas de modelagem in 

silico. O notebook usado disponibiliza um modelo de aprendizado de máquina treinado com 

uma parte selecionada do banco de dados do AlphaFold, porém, possui a precisão similar ao 

sistema completo do código-fonte AlphaFold.  

Para a predição da estrutura, utilizou-se a sequência do gene PF3D7_0509800, presente 

no banco de dados PlasmoDB (25), os preditores de domínio, famílias e locais funcionais Pfam 

(26) e PROSITE (26), a ferramenta de alinhamento local BLAST (27) e a ferramenta de 

alinhamento múltiplo Clustal. (28) Através do alinhamento local da proteína expressa pelo gene 

PF3D7_059800 e o seu alinhamento múltiplo com as enzimas humanas homólogas à 

PfPI4KIII𝛽, que possuem maior resolução no banco de dados RCSB PDB (29), foram 

selecionados domínios importantes para a proteína. Além disso, tais domínios também foram 

escolhidos considerando atribuições sobre a sua importância na atividade catalítica da enzima, 

resultando em dois domínios principais: n-lobe proximal e domínio catalítico. (30) Outra 

métrica usada para a construção do modelo estrutural PfPI4KIII𝛽 foi a comparação das 

sequências desses domínios com a estrutura encontrada no AlphaFoldDB, levando em conta a 

sua acurácia na predição em cada um desses trechos. Para isso, utilizou-se o índice pLDDT (do 

inglês, predicted Local-Distance Difference Test) (24) que indica o quão confiável foi a 

previsão do modelo gerado. Verificou-se que, entre os dois domínios citados, existe uma região 

de 437 resíduos (843-1279) com baixo pLDDT. No entanto, como estruturalmente esses 

domínios estão próximos na proteína humana (PDB ID: 4D0L), substituímos essa região por 

uma alça de 10 glicinas. A sequência final da proteína PfPI4KIII𝛽 está indicada no Apêndice 

A. 

 

2.3 Dinâmica molecular para validar a modelagem da estrutura tridimensional 

 

Realizamos 100 ns de simulações de dinâmica molecular usando o pacote de programas 

AMBER19 (31) para avaliar a estabilidade da estrutura predita pelo AlphaFold colab notebook. 

Inicialmente, todos os hidrogênios foram adicionados com o software reduce (32), pertencente 

ao pacote AmberTools. (31) A proteína foi parametrizada utilizando o campo de força AMBER 

FF14SB. (33) A estrutura foi envolvida por uma caixa cúbica de água (e.g., TIP3P (34)) com 

18 Å de distância entre a proteína e a borda da caixa. Além disso, um íon de sódio foi adicionado 

ao sistema para mantê-lo eletronicamente estável. 
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2.4 Recuperação de moléculas com atividade biológica conhecida contra homólogos de 

pfpi4k e análise do espaço químico 

 

A partir da base de dados ChEMBL, selecionamos compostos com atividade inibitória 

contra as enzimas ortólogas da PfPI4K. Os filtros utilizados foram: as atividades biológicas 

foram medidas e reportadas como valores de IC50 ou Ki; o operador de atividade biológica foi 

“=”; a atividade biológica foi padronizada como “nM”; o tipo do alvo foi “SINGLE PROTEIN”; 

não houve comentários em relação à validade da atividade biológica nem sinalizadores de 

duplicação de dados; não conter as palavras-chaves ‘inconclusive’, ‘not determined’, 

‘undetermined’, ou ‘approximate value’ no campo de comentários para a atividade biológica 

(‘activity comment’). Para determinar a potência de cada molécula, usada como classe no 

aprendizado de máquina, foram usados os dados presentes no operador atividade. 

A análise do espaço químico foi feita a partir da biblioteca Python ChemPlot. (35) A 

partir de um conjunto de moléculas e suas características estruturais, esse pacote permite a 

visualização bidimensional do espaço químico utilizando três tipos de algoritmos de  redução 

de dimensionalidade: PCA, t-SNE e UMAP. A fim de comparar a dimensão do espaço químico 

delimitado pelas moléculas recuperadas, também fizemos um banco de moléculas que 

interagem com proteínas diversas. Para conferir diversidade estrutural às moléculas, 

escolhemos enzimas de funções diferentes, e, para isso, buscamos no ChEMBL alvos que 

possuam o primeiro digito do código EC (do inglês, Enzyme Commission Number) diferentes 

uns dos outros. Também utilizamos o coeficiente de Tanimoto para calcular a similaridade 

molecular entre os compostos do banco de dados e agrupamos as moléculas em clusters 

utilizando-se o algoritmo Butina da biblioteca Python RDKit. (36) 

 

2.5 Docagem molecular de inibidores de hPI4KIII𝛽 

 

A docagem molecular foi realizada utilizando-se o DOCK 6 (versão 6.9). Essa é uma 

extensão do DOCK 5 com amostragem e pontuação aprimoradas que também utiliza algoritmo 

de busca sistemática para encontrar a melhor pose do ligante, explorando a flexibilidade do 

ligante através da sua fragmentação. (37) 

Antes de realizarmos a docagem molecular, as estruturas da proteína e dos ligantes 

foram preparadas removendo os íons, outros cofatores e moléculas de água não estruturais, ou 

seja, não conservadas em outras estruturas cristalográficas e localizadas fora do sítio de ligação; 

foram adicionados átomos de hidrogênios  com a ferramenta AddH do software Chimera (38), 
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considerando o pH fisiológico 7,4; foram atribuídas cargas parciais através do modelos AMBER 

FF14SB (33) e AMI-BCC (39) aos resíduos da proteína e aos ligantes, respectivamente.  

Em seguida, realizamos a minimização de energia da estrutura utilizando-se o software 

Open Babel. (40) Por fim, geramos esferas dentro do sítio de ligação do receptor com o 

programa sphgen do DOCK 6. (41) O sítio de ligação foi definido com base no ligante 

cristalográfico da estrutura (PDB ID: 4D0L). Além disso, utilizamos o programa Showbox do 

DOCK 6 para delimitar uma caixa ao redor das esferas com uma margem de 10 Å em todas as 

direções e utilizamos o programa GRID do DOCK 6 (42) para calcular a energia das interações 

entre um átomo fictício e o receptor dentro da caixa definida anteriormente. Os ligantes foram 

tratados como flexíveis de acordo com o protocolo padrão de acoplamento flexível (FLX) 

descrito em. (37) 

O protocolo de docagem foi então avaliado a partir da estratégia de redocagem 

(redocking), que consiste em reposicionar o ligante cristalográfico do complexo receptor-

ligante nas coordenadas originais do receptor usando um programa de docagem. Esse 

experimento é comumente empregado com a finalidade de avaliar a precisão de uma função de 

pontuação de um programa de docagem em relação às suas capacidades de reprodução de poses 

conhecidas. Geralmente, as poses preditas são comparadas às suas respectivas poses 

cristalográficas com base no desvio quadrático médio (RMSD) entre elas.  

Para realizar a docagem também foi utilizado o software GOLD. (43) Diferente do 

DOCK 6, o GOLD (Genetic Optimization for Ligand Docking) prediz o modo de ligação dos 

ligantes com base em algoritmo genético, explorando a flexibilidade do ligante através de 

populações conformacionais das moléculas analisadas. (44) A validação do protocolo de 

docagem foi feito através da redocagem do ligante cristalográfico disponível na estrutura do 

homólogo humano da PfPI4KIII𝛽 (PDB: 4D0L), cujas poses foram avaliadas com base em 

todas as funções de pontuação disponíveis no GOLD (Goldscore, Chemscore, CHEMPLP e 

ASP). Além disso, também foi utilizada a função Chemscore parametrizada para docagem 

molecular em quinases.  

Neste trabalho, o estudo de redocagem foi realizado utilizando-se a estrutura 

cristalográfica a enzima hPI4KIII𝛽 (PDB ID: 4D0L). As poses preditas pelo programa de 

docagem foram comparadas com as poses cristalográficas utilizando-se o valor de RMSD 

corrigido por simetria. Tal como em (37), caracterizamos os resultados da docagem tal como 

se segue: se a pose de maior pontuação estiver até 2 Å de distância (medida em RMSD) da pose 

cristalográfica, consideramos o resultado válido; no entanto, se a pose correta (próxima à pose 

cristalográfica) for amostrada, mas não pontuada como a melhor, consideramos que houve uma 
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falha de pontuação da pose; finalmente, se a pose correta não tiver sido amostrada dentre as 100 

conformações geradas durante a docagem, consideramos que houve uma falha de amostragem. 

A soma desses três casos possíveis será sempre igual a 100%. 

 

2.6 Validação do protocolo para a triagem virtual 

 

Primeiramente realizamos as docagens moleculares entre moléculas com atividade 

definida contra as enzimas hPI4KIII𝛽 recuperadas do banco de dados ChEMBL. Para tanto, 

utilizamos a estrutura tridimensional dessa enzima resolvida por cristalografia de raios X (PDB 

ID: 4D0L). Para cada uma das moléculas recuperadas, também foram geradas 50 decoys pelo 

servidor DUD-e (45), que são moléculas com características físico-químicas semelhantes às 

moléculas de atividade conhecida, porém, que são topologicamente diferentes. Isto é, são 

moléculas que potencialmente não se ligam ao sítio ativo da enzima hPI4KIII𝛽, apesar de suas 

similaridades físico-químicas às moléculas conhecidamente ativas. (45) Além disso, foram 

feitas as docagens moleculares entre os decoys e a enzima hPI4KIII𝛽.  

Dessa forma, a partir da função de pontuação das moléculas docadas, foram feitos os 

gráficos de curva ROC (do inglês, receiver operation characteristic) e calculou-se a taxa de 

enriquecimento entre as moléculas recuperadas, consideradas ligantes da enzima hPI4KIII𝛽, e 

os seus decoys. Para avaliar se o protocolo de docagem foi capaz de priorizar os ligantes com 

atividade biológica definida em detrimento dos decoys, utilizamos valores maiores ou iguais a 

0.8 como ideais para as métricas AUC (do inglês, area under the curve) e enriquecimento. Essa 

última métrica calculada tem como objetivo identificar se, dentre as milhares de moléculas 

analisadas, encontramos aquelas que realmente se ligam ao sítio ativo nas primeiras posições. 

(46) Isto, pois, ao final de uma triagem virtual, normalmente, selecionam-se as primeiras 

moléculas para avaliação experimental. Logo, idealmente, espera-se que todas as moléculas 

ativas sejam ranqueadas nas primeiras posições, o que configuraria um sucesso na triagem 

virtual. Assim, o enriquecimento é normalmente avaliado nas primeiras frações do conjunto de 

moléculas (por exemplo, 0.01% ou 1% do total de compostos). Os gráficos de curva ROC e 

enriquecimento foram gerados pelo Rstudio, utilizando a linguagem de programação R, e 

através das bibliotecas ROCR e enrichvs. 

 

2.7 Aprendizado de máquina 

 

As técnicas de aprendizado de máquina Random Forest, Gradient Tree Boosting e SVM 

(47) foram utilizadas neste projeto para predizer a atividade de compostos desconhecidos em 
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relação às proteínas homólogas da PfPI4KIII𝛽. O treinamento foi realizado com o método de 

validação cruzada K-fold, em que K é o número de subconjuntos nos quais o conjunto total de 

dados foram subdivididos. Neste trabalho, utilizamos K igual a 5. Para todas as três técnicas 

utilizamos suas implementações disponíveis na biblioteca scikit-learn [47] com os parâmetros 

mantidos como padrão, exceto o número de estimadores/interação que foram definidos como 

500. Os modelos foram treinados utilizando como entrada os fingerprints ECFP4 das moléculas 

e foram avaliados por meio da métrica acurácia (porcentagem de acertos do modelo). 
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3 RESULTADOS 

 
 

3.1 Modelagem estrutural da enzima PfPI4KIII𝛽 

 

Por meio de estudos que correlacionam a sequência, estrutura e função proteica dos 

homólogos da enzima PI4KIII𝛽 (Figura 2, delimitamos dois domínios principais para a 

atividade dessa proteína, domínio N-lobe e C-catalítico. Dessa forma, como ambos são 

necessários para a constituição do sítio de ligação ao ATP, as duas regiões foram escolhidas 

para compor o modelo.  

 

 

Figura 2 - Representação dos domínios presentes em PI4KIII𝛽 de Plasmodium falciparum e de humano com 

base em alinhamento de sequência e estrutura. Domínio helicoidal em verde, N-lobe em vermelho e 

C-catalítico em amarelo. 

Fonte: STERNBERG; ROEPE. (30) 
 

Como o algoritmo do AlphaFold utiliza MSA (do inglês, Multiple Sequence Alignment) 

nas primeiras camadas da rede neural para fazer a predição da estrutura terciária através da 

estrutura primária (24), existe uma tendência a estabelecer uma relação estrutural entre 

sequências homólogas. Então, como há uma semelhança sequencial de 75 % entre os resíduos 

dos domínios de interesse da proteína PI4K humana e plasmodial, podemos usar como 

referência a estrutura cristalográfica humana (PDB ID: 4D0L) e comparar com o modelo gerado 

para corroborar com a sua validação e iniciar os estudos. (30) Os alinhamentos de sequência e 

estrutural (RMSD de 1,043 Å) entre os domínios citados são mostrados nas Figuras 4 e 5, 

respectivamente. 
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Figura 3 -  Alinhamento das sequências primárias dos domínios N-lobe e C-catalítico das proteínas PfPI4K, hPI4K 

(sequência obtida do PDB 4D0L) e hPI3K (sequência obtida do PDB 7MLK) gerado pelo Clustal (28) 

e imagem gerada pelo servidor ESPript. (48) A representação da estrutura secundária da PfPI4K é 

baseada na predição feita pelo AlphaFold. As regiões conservadas estão delimitadas pelos retângulos 

azuis e as regiões idênticas estão coloridas em vermelho. As regiões que correspondem ao sítio ativo 

estão destacadas por retângulos amarelados. 

 

Fonte: Elaborada pela autora. 

 

 

 

A B 

  

Figura 4 - Comparação do modelo estrutural gerado para os domínios da enzima PfPI4K com seus homólogos 

humanos. (A) Representação da cavidade delimitada pelo sítio de ligação ao ATP do modelo da proteína 

PfPI4K, cujo código de cores é determinado pela similaridade do alinhamento linear com as homólogas 

PI4K e PI3K humanas visto na Figura 3, isto é, em vermelho estão destacados os resíduos idênticos, 

rosa com similaridade entre 0.7 - 1.0 e branco com similaridade menor que 0.7. (B) Alinhamento 

estrutural entre o modelo gerado em azul e os domínios N-lobe e C-catalítico da enzima hPI4K (PDB: 

4D0L) (RMSD de 1.043 Å). 

Fonte: Elaborada pela autora. 
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Além disso, como uma das métricas utilizadas para validar o modelo estrutural é o valor 

pLDDT de cada resíduo predito, também analisamos a confiabilidade das regiões da proteína 

predita para o gene PF3D7_0509800, encontrada no banco de dados AlphaFoldDB. Dessa 

forma, selecionamos os resíduos próximos dos domínios n-lobe e c-cat que estivessem preditos 

com alto pLDDT. Para unir os domínios, foi utilizado uma alça formada por 10 resíduos de 

glicina, por ser um aminoácido flexível que não influenciaria significativamente os campos 

eletrostáticos ao seu redor. Ao final, foi obtido um modelo para a estrutura da PfPI4KIII𝛽 com 

RMSD de 0,78 Å em relação ao modelo encontrado no AlphaFoldDB e com altos valores de 

pLDDT, sendo válido para modelagens computacionais como docagem e dinâmica molecular. 

Para confirmar que o modelo predito não se encontra em um mínimo local de energia, 

também foi feita uma análise da estabilidade estrutural do modelo. Na Figura 6 constatamos 

flutuações significativas da proteína (1 – 4 Å) durante a simulação. Porém, quando analisamos 

o gráfico de RMSF (do inglês, root-mean-square fluctuation), observamos que as regiões de 

loop e alças foram as que apresentaram maior flexibilidade, ao passo que as regiões 

correspondentes à cavidade de ligação (resíduos 200 a 290) se mostraram mais estáveis. A única 

exceção, como esperado, foi a região do motivo p-loop presente no sítio ativo (resíduos 103 ao 

113) que apresentou maior flexibilidade ao longo da simulação. 

 

A B 

 

 

Figura 5 - Modelos da enzima PfPI4KIII𝛽. (A) Modelo da PfPI4KIII𝛽 disponível no AlphaFoldDB colorido de 

acordo com seu pLDDT (per-residue confidence score).  Azul escuro = pLDDT > 90 (alta confiabilidade 

no modelo predito); azul claro = 90 > pLDDT < 70 (modelo com confiabilidade reduzida); amarelo = 

70 > pLDDT < 50 (baixa confiabilidade); vermelho = pLDDT < 50 (baixíssima confiabilidade). (B) 

Alinhamento estrutural do modelo disponível no AlphaFoldDB e do modelo predito através da 

sequência presente no APÊNDICE A. 

Fonte: Elaborada pela autora. 
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Figura 6 - Resultado da simulação de dinâmica molecular do modelo predito. (A) Gráfico de RMSD. (B) Gráfico 

de RMSF (flutuação média de cada resíduo durante a simulação). 

Fonte: Elaborada pela autora. 

 
 

 

3.2 Recuperação de moléculas com atividade biológica conhecida contra homólogos de 

hPI4K e análise do espaço químico 

 

A fim de construir um modelo de aprendizado de máquina para predizer inibidores 

promissores para a enzima PfPI4K buscamos por inibidores conhecidos dessa enzima na base 

de dados ChEMBL. (49) No entanto, na data de consulta, não foi encontrada nenhuma molécula. 

Assim, dada a similaridade de sequência entre a enzima PfPI4K e suas homólogas humanas, 

decidimos por assumir que os inibidores conhecidos para as proteínas homólogas humanas da 

PI4K também seriam válidos para o alvo desejado. No total, foram recuperadas 5.083 moléculas 

da base de dados ChEMBL com atividade biológica (IC50 ou Ki) avaliada contra os alvos 

humanos: PI3K ('CHEMBL1075102', 'CHEMBL3268', 'CHEMBL5554' e 

'CHEMBL1163120'), PI4K ('CHEMBL1770034', 'CHEMBL2251', 'CHEMBL3667', 

'CHEMBL5667' e 'CHEMBL1795194') e PI5K ('CHEMBL1908383' e 'CHEMBL5969'). 

 Para a construção de modelos de classificação, selecionamos apenas as moléculas cujo 

parâmetro ‘Standard relation’ era igual a ‘<’, ‘>’, ‘≤’ ou ‘≥’ a fim de 

classificá-las como potentes e pouco potentes com base em suas 

atividades biológicas (IC50 ou Ki). Além disso, filtramos as moléculas cujo parâmetro 

‘Standard Unit’ foi igual a ‘nM’ e excluímos as moléculas que possuíam o parâmetro ‘Standard 

relation’ vazio. Após a aplicação destes filtros restaram 1.888 das 5.083 moléculas iniciais.  

Considerando que moléculas ativas e inativas próximas ao limiar de 10.000 nM 

(pActivity = 5) podem ser estruturalmente similares, o que acarretaria um enviesamento dos 

modelos de aprendizado de máquina, também criamos um banco de dados em que excluímos 
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as moléculas com atividade considerada intermediária. Para isso, consideramos como potentes, 

as moléculas com ‘Standard value’ ≤ 1.000 nM (pActivity ≥ 6), intermediárias 

com 1.000 nM < ‘Standard value’ ≤ 10.000 nM (5 ≤ pActivity < 6) e não 

potentes com ‘Standard value’ > 10.000 nM (pActivity < 5). Desse modo, obtivemos 386 

moléculas potentes, 486 não potentes e 1.016 intermediárias. Logo, obtivemos um conjunto de 

dados cuja proporção de moléculas potentes e não potentes é 44 % e 56 %, respectivamente. 

A B 

  

Figura 7 - Análise da atividade do banco de dados de moléculas que interagem com homólogos humanos de PI4K.  

(A) Histograma do -log(IC50 ou Ki). (B) Histograma da classificação das moléculas em não potentes, 

intermediárias e potentes. 

Fonte: Elaborada pela autora. 

 
 

 

Para verificar se essas moléculas são representativas do conjunto de dados, analisamos 

o espaço químico ocupado pelas moléculas com o auxílio de métodos de redução de 

dimensionalidade. (35) Além disso, para confirmar se esse espaço delimitado pelas moléculas 

recuperadas é amplo o suficiente, também analisamos o espaço químico com moléculas 

estruturalmente diversas que interagem com proteínas diferentes. Assim, a partir da Figura 8, 

observamos que as moléculas de interesse estão bem distribuídas no espaço químico.  

 

 

 

 

 

 

 

 

 

 



22 

 

 

A B 

  

Figura 8 - Representação do espaço químico das moléculas do bando de dados construído. (A) Espaço químico 

delimitado por moléculas com atividade biológica determinada para diferentes enzimas. (B) Espaço 

químico delimitado pelas moléculas do banco de dados que interagem somente com as proteínas 

homólogas à PI4K. 

Fonte: Elaborada pela autora. 

 

Quando analisamos o coeficiente de Tanimoto entre as moléculas (Figura 9), vemos 

também que as moléculas não são estruturalmente similares nessa métrica, em que valores 

distantes de 1 representam moléculas diferentes. 

A B 

  

Figura 9 -  Representação da similaridade entre as moléculas por dois métodos diferentes. (A) O histograma 

apresenta os coeficientes de Tanimoto de cada par de moléculas no banco de dados, cuja média é 0,23. 

(B) Quantidade de moléculas que compõe cada um dos 336 clusters formados por moléculas que 

possuem distância mínima de 0,2 através do algoritmo Butina da biblioteca Python RDKit. 

Fonte: Elaborada pela autora. 
 

 

Utilizamos também o algoritmo Butina para agrupar as moléculas de acordo com um 

limiar que delimita a distância euclidiana mínima entre as moléculas e os representantes de cada 
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cluster (moléculas). Foram testados vários limiares para o máximo de dissimilaridade entre as 

moléculas e aquela que melhor separou os clusters foi o limiar de 0,2. Assim, obtivemos 336 

clusters: 77 com 1 molécula, 97 com mais de 5 moléculas, 11 com mais de 25 moléculas e 1 

com mais de 100 moléculas. Tal diversidade química é crucial para a construção de modelos de 

aprendizado de máquina com alta capacidade de generalização. Assim, é possível ver que as 

moléculas presentes no banco de dados são diversas, contribuindo para um melhor aprendizado 

do modelo de classificação para a atividade. 

 

3.3 Docagem molecular de inibidores de PI4KIII𝛽 e seus decoys 

 

Antes de realizar a triagem virtual, validamos o protocolo de docagem com poses e 

ligantes conhecidos. Para isso, foram feitas a re-docagem do ligante cristalográfico e a análise 

da curva ROC e do enriquecimento feitos a partir de funções de classificação das docagens de 

ligantes conhecidos da enzima PI4KIII𝛽 (319 moléculas) e 50 decoys para cada um deles. Como 

algumas moléculas são da mesma classe, tiveram decoys gerados que foram repetidos. Assim, 

foram gerados somente 14729 decoys, totalizando uma média de, aproximadamente, 46 decoys 

por ligante. 

As redocagens foram feitas utilizando-se os programas DOCK 6 e GOLD, que possuem 

estratégias diferentes para a identificação da melhor pose. O DOCK 6 utiliza o método de busca 

sistemática, que fragmenta o ligante e explora os graus de liberdade da molécula no sítio ativo 

de forma a combinar esses fragmentos até a reconstrução total da molécula. Já o GOLD, utiliza 

algoritmo genético como método de busca para encontrar de forma estocástica as melhores 

poses a partir de populações de conformações, mutações e combinações dos graus de liberdade.  

Para ambos os algoritmos, encontramos a pose cristalográfica do ligante nas docagens 

(RMSD < 2 Å). Porém, as funções de pontuação do GOLD (e.g., chemscore kinase, chemPLP, 

chemscore) tiveram maior sucesso em classificar poses com menor valor de RMSD do que a 

função do DOCK 6 (dockscore). Todas as funções de pontuação utilizadas no GOLD 

classificaram a pose com o menor RMSD como a melhor pontuação, mas a função 

chemscore.kinase.params foi escolhida para continuar os estudos para a triagem virtual. Isso 

porque esta função foi parametrizada especificamente para triagens virtuais de quinases (Figura 

10). 
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Figura 10 -  Redocagem molecular do ligante cristalográfico da proteína 4D0L (N-(5-(4-cloro-3-(2-hidroxi-

etilsulfamoil) - feniltiazol-2-il) -acetamida). (A) Melhor pose obtida com o DOCK 6 (dockscore de 

-54 e RMSD de 7.9 Å). (B) Segunda melhor pose obtida com o DOCK 6 (dockscore de -48.4 e 

RMSD de 1.0 Å). (C) Melhor pose obtida com o GOLD a partir da função de pontuação 

chemscore.kinase.params com RMSD de 1.1 Å.  

Fonte: Elaborada pela autora. 
 

 

Para a validação final do protocolo, foram utilizadas 319 moléculas recuperadas do 

ChEMBL que apresentam atividade biológica contra o alvo CHEMBL3286. Nessa seleção, 

aplicamos os seguintes filtros: ‘Standard relation’ igual a ‘=’ e ‘Standard Unit’ igual a ‘nM’. 

Também utilizamos o servidor DUD-E para gerar no máximo 50 decoys para cada uma dessas 

moléculas. Como resultado, obtivemos um total de 14.732 decoys únicos. No entanto, a área 

sob a curva ROC (AUC) foi de 0,47 (Figura 11, ou seja, a função de pontuação teve uma 

acurácia similar a um algoritmo aleatório (AUC = 0,5). Além disso, o enriquecimento de 

aproximadamente 12 moléculas (0,5% do total de moléculas docadas – 753 moléculas) também 

confirma a dificuldade de se encontrar possíveis inibidores da PI4K através desse método. Esse 

resultado com baixa acurácia e poder de classificação das moléculas pode ser devido a falhas 

no protocolo ou até mesmo a baixa resolução da estrutura da enzima PDB ID 4D0L, de 2,94 Å. 

Essa última variável pode estar relacionada com a incerteza da localização de resíduos chaves 

para a interação de alguns dos ligantes, que adquirem poses desfavoráveis na docagem 

molecular quando em relação a sua pose real no sítio de ligação. Assim, decoys podem ter poses 

mais favoráveis, obtendo melhor classificação com as funções de pontuação. 
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Figura 11 - Resultado da validação para a triagem virtual. (A) Curva ROC. (B) Curva ROC semilogarítmica. 

Fonte: Elaborada pela autora. 

 

 

3.4 Aprendizado de máquina com fingerprints gerados 

 

Para treinar os modelos de predição de atividade (Activity ou pActivity) das moléculas 

em relação às proteínas homólogas de hPI4K, foi utilizado o banco de dados da seção 3.2 e os 

algoritmos Random Forest, Gradient Tree Boosting (GBoost) e Support Vector Machines 

(SVM) com 4 funções diferentes de kernel. Os resultados de cada algoritmo de classificação 

são apresentados na Tabela 1. Como métrica de qualidade utilizamos: acurácia, representando 

o desempenho geral do modelo; especificidade, mostrando a cobertura das amostras negativas; 

e AUC. 

 

Tabela 1 -  Resultados dos algoritmos de aprendizado de máquina para a classificação de compostos ativos e 

inativos contra a enzima hPI3K. Os modelos foram treinados utilizando-se fingerprints ECFP4 com 

2.048 bits.  
Algoritmo Acurácia Sensibilidade AUC 

Random Forest 0,75 ± 0,06 0,6 ± 0,2 0,82 ± 0,09 

Gradient Tree Boosting 0,74 ±0,08 0,7 ± 0,2 0,80 ± 0,07 

SVM (kernel = rbf) 0,75 ± 0,09 0,7 ± 0,2 0,85 ± 0,07 

SVM (kernel = linear) 0,74 ± 0,08 0,7 ± 0,1 0,82 ± 0,07 

SVM (kernel = poly) 0,74 ± 0,09 0,7 ± 0,2 0,85 ± 0,04 

SVM (kernel = sigmoid) 0,8 ± 0,1 0,7 ± 0,2 0,83 ± 0,08 

Fonte: Elaborada pela autora. 

 

Observamos que as moléculas foram bem classificadas pelos três tipos de algoritmos e 

que os resultados foram equivalentes entre si, não apresentando diferença significativa. Além 
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disso, a sensibilidade mede a proporção de moléculas preditas como ativas que são de fato 

ativas contra as proteínas, sendo extremamente importante para a triagem de diversos ligantes 

com atividade desconhecida. Nesse sentido, tivemos uma predição de aproximadamente 75% 

dos ligantes. 
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4 CONCLUSÕES E CONSIDERAÇÕES FINAIS 

 
 

O estudo de moléculas com mecanismos de ação diferentes dos fármacos com atividade 

antiplasmodial disponíveis é de extrema importância para a eliminação da malária. Nesse 

trabalho, procuramos explorar a estrutura de um alvo validado para procurar novos inibidores 

com estruturas diversas que potencialmente apresente modos de ligação inovadores. Para isso, 

foi construído um modelo estrutural da proteína PfPI4KIII𝛽 através do algoritmo AlphaFold 

v2.1.0. A sequência primária utilizada para fazer a predição foi definida de acordo com a análise 

dos domínios funcionais e a estrutura resolvida da proteína homóloga humana PI4KIII𝛽. Para 

validar essa estrutura, utilizamos a métrica pLDDT, a comparação por alinhamento estrutural 

com a proteína hPI4KIII𝛽 e dinâmica molecular. Todas as estratégias de validação mostraram 

que, além de estável, a estrutura predita possui uma alta confiabilidade.  

Como não possuímos bancos de dados de moléculas inibidoras da PI4K de Plasmodium 

spp., utilizamos as moléculas recuperadas do ChEMBL que possuem atividade biológica 

definida contra a enzima hPI4KIII𝛽 (PDB ID: 4D0L). Apesar de conseguirmos validar a 

docagem molecular através da reprodução (redocking) da pose original do ligante 

cristalográfico, não foi possível validar a triagem virtual com base nos ligantes conhecidos e 

decoys. Tal erro de validação pode ter ocorrido devido à baixa capacidade das funções de 

pontuação em priorizar moléculas ativas em detrimento de decoys ou ao protocolo de triagem 

virtual estabelecido. Assim, em trabalhos futuros, planejamos realizar novos experimentos para 

determinar se o erro de validação ocorreu devido ao protocolo utilizado.  

Já os modelos de aprendizado de máquina treinados utilizando-se somente a estrutura 

das moléculas que interagem com os homólogos da enzima PI4K apresentaram alta acurácia. 

Considerando que as moléculas utilizadas para o treinamento apresentaram diversidade 

estrutural, acreditamos que o modelo obtido será útil para a descoberta de novos inibidores a 

partir de um banco de moléculas cuja atividade contra a enzima PI4K sejam desconhecidas. 

Portanto, os próximos passos serão realizar uma triagem virtual com os modelos de aprendizado 

de máquina agrupar as moléculas ativas por similaridade estrutural e selecionar as moléculas 

representantes de cada cluster que possuam maior diversidade estrutural em relação às 

moléculas obtidas da base de dados ChEMBL para validação experimental em ensaios contra 

o parasita padronizados em nosso laboratório. Além disso, pode-se ainda realizar uma análise 

visual do modo de ligação dos compostos selecionados via docagem molecular e uma análise 

de estabilidade dos complexos proteína-ligante preditos através de dinâmica molecular. 

Projetos futuros utilizarão esse modelo estrutural para aplicar diferentes técnicas SBDD para 
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encontrar novos inibidores. Também pretendemos expressar de forma heteróloga a proteína 

plasmodial, obter a estrutura experimental e padronizar um ensaio de atividade com a PI4K 

para possibilitar a triagem in vitro de moléculas encontradas computacionalmente. 
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APÊNDICE A 

 
 

Sequência usada para construir o modelo. 

 

>PfPI4K_nlobe_catalitico 

KQRRCDYFSLLNNFINLLISVSNLLAAEPDIDLRNELLRRFIYSLNSWMNMRRCIVACC

ENIFAMTGLCIPLESMSSSTFNHDTNNRLSYNNLQILHFNNEECKIFFSKKRAPYLLMF

EVAGGGGGGGGGGELFEEKKKRIRKVSPYGKLKTWDLKCVIIKGGDDLRQELLASQ

LIKQFKIIFENAGLPLWLRPYEILVTGSNSGIIEYVNDTCSVDSLKRKFGADSISTIFNIV

FSDYIFEAKKNFIESHAAYSLISYLLQVKDRHNGNLLLDSDGHLIHIDYGFMLTNSPGN

VNFETSPFKLTQEYLDIMDGEKSDNYEYFRRLIVSGFLEARKHSEEIILFVELMMPALK

IPCFANGTQFCIESLKERFMTNLTVDVCIQRINALIEASINNFRSVQYDYFQRITNGIM 

 




