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RESUMO

A maléria é uma doenca infecciosa causada por protozoarios do género Plasmodium ssp. e
apesar do sucesso no combate dessa doenca, em 2020 foram reportados 241 milhdes de casos
e 627 mil dbitos. E de extrema importancia a descoberta de novos antimaléricos que, além de
eficientes, tenham mecanismos de acdo diferentes daqueles ja utilizados para evitar
mecanismos de resisténcia cruzada. Para isso, 0 objetivo deste trabalho é descobrir potenciais
inibidores da enzima fosfatidilinositol-4-quinase do tipo Il B do Plasmodium falciparum
(PfPI4KII1IR). Essa enzima é um alvo macromolecular atrativo devido a sua importancia no
desenvolvimento do parasito e representa um novo mecanismo de acdo diferente dos
antimalaricos usuais. A partir da estrutura tridimensional da PfPI4KIIIR e de ligantes das suas
proteinas homélogas humanas, integramos técnicas de docagem molecular e triagem virtual
com métodos de aprendizado de maquina. Assim, visamos identificar e classificar potenciais
moléculas capazes de interagir com o seu sitio ativo da PfPI4KIIIR. Em vista disso, construimos
um modelo da estrutura tridimensional da enzima através do AlphaFold colab notebook,
recuperamos moléculas com atividade conhecida contra enzimas homologas da P14K no banco
de dados ChEMBL e moléculas com atividade desconhecida contra esse alvo pelo banco de
dados ZINC. Para iniciar o estudo, validamos a estrutura por alinhamento estrutural com a
enzima PI14K humana, utilizando a métrica pLDDT e simulacdo de dindmica molecular. Apesar
da docagem molecular ter sido validada pela redocagem do ligante cristalografico da enzima
hPI4K, a abordagem aplicada a triagem virtual ndo foi validada. Diante disso, foram treinados
modelos de aprendizado de méaquina para predizer compostos potentes contra as proteinas
homologas humanas. Esses tiveram uma acurécia de aproximadamente 75%, vislumbrando a
possibilidade de realizar a triagem virtal de compostos com atividade desconhecida contra essas

proteinas.

Palavras-chave: Maléria. PI14K. In silico.
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1 INTRODUCAO

A maléria é uma doenca infecciosa causada por protozoarios do género Plasmodium
ssp. e transmitida aos humanos pela picada de fémeas do mosquito Anopheles spp. Apesar do
sucesso significativo do combate a essa doenca nas duas Ultimas décadas, em 2020, quase
metade da populacdo mundial corria o risco de contrair a maléaria e houve uma estimativa de
241 milhdes de casos e 627.000 6bitos devido a malaria. (1)

A persisténcia desses quadros endémicos tem como principais causas a resisténcia do
mosquito a inseticidas e o surgimento de parasitos resistentes aos antimalaricos mais utilizados,
incluindo as terapias recomendadas pela Organizacdo Mundial da Satude (OMS) baseadas na
combinacdo de derivados de artemisinina (ACTs). (2-5) Portanto, torna-se de extrema
importancia a descoberta de novos farmacos antimaléricos inovadores que evitem o0s
mecanismos de resisténcia adquiridos, possuindo modos de acdo diferentes daqueles
convencionais. (6-7)

Devido ao seu papel central nas vias metabdlicas essenciais aos parasitos, as enzimas
sdo alvos bioldgicos importantes para os estudos de planejamento de farmacos. (8-9) Tendo em
vista a resisténcia a medicamentos, € interessante a busca por alvos ainda pouco explorados do
P. falciparum, parasito responsavel pela forma mais letal da doenca (1,5), que direcionem a
descoberta de moléculas bioativas com mecanismos de inibigdo inovadores.

Dentre esses alvos, destaca-se a proteina quinase lipidica fosfatidilinositol-4-OH
quinase tipo Il beta do P. falciparum (PfPI14KI11B) que, além de ser uma enzima essencial ao
desenvolvimento do parasito em diferentes estagios, pode ser inibida por moléculas pequenas
(ligantes), como os derivados imidazopirazinicos. (10-11) Os ortélogos de PI14K fosforilam os
lipidios do tipo fosfoinositideos, que em sua forma difosfatada torna-se um importante
regulador de diversas vias de sinalizacdo celular, incluindo o processo de citocinese (12-13)
Atualmente, existe um inibidor seletivo da PfPI4K, denominado MMV3900048, que se
encontra em estudos clinicos de fase 2. (6)

Nesse contexto, métodos computacionais em bioinformatica associados ao
planejamento de farmacos sdo altamente promissores, visto que aceleram, direcionam e
contribuem significativamente desde a identificacdo de hits até a otimizagdo de leads. (14)
Dentre as estratégias de planejamento, destacam-se os métodos de SBDD (do inglés, Structure-
Based Drug Design), que se baseiam no conhecimento da estrutura tridimensional de alvos
biolégicos, como proteinas ou acidos nucleicos, adquirido por técnicas de cristalografia,

ressonancia magnéetica nuclear (RMN), criomicroscopia eletronica (Cryo-EM), modelagem por



homologia ou de aprendizado de méquina. Um dos principais métodos SBDD é a docagem
molecular, uma estratégia que realiza a previsdo do modo de ligacdo entre o alvo molecular e
seu ligante, que, em conjunto com a triagem virtual de varias moléculas de um banco de dados,
permite a selecdo de compostos com atividade biolégica promissora. (9)

A partir da estrutura tridimensional do alvo, é possivel integrar técnicas de docagem
molecular e triagem virtual com métodos de aprendizagem de maquina para realizar a predi¢éo
de propriedades fisico-quimicas, afinidade de ligacdo, seletividade e classificacdo de moléculas.
(14-16) No contexto de classificacdo de moléculas na triagem virtual, a abordagem classica de
aprendizado de maquina consiste em treinar modelos computacionais utilizando-se como
entrada um conjunto de complexos proteina-ligante ja conhecidos que serdo utilizados na
classificacdo de atividade biologica de compostos desconhecidos. (17)

Uma segunda estratégia muito utilizada para a descoberta de novos hits é através dos
métodos de LBDD (do inglés, Ligand-Based Drug Design). Esses, por sua vez, baseiam-se na
modelagem e andlise computacional de ligantes conhecidos, cujas informacdes estruturais e
atividade biolégica podem ser encontrados em bancos de dados puablicos. Dessa forma, €
possivel correlacionar esses dados e realizar uma triagem virtual em larga escala para recuperar
compostos promissores. Dentre tais técnicas, as principais sdo: modelos farmacoféricos, QSAR
(do inglés, Quantitative Structure Activity Relationship) e célculos de similaridade baseados
em propriedades fisico-quimicas das moléculas. (18)

Portanto, considerando a necessidade de encontrar novos candidatos a inibidores dos
parasitos resistentes aos medicamentos convencionais, esse projeto baseou-se no estudo da
enzima PfP14KI11S do P. falciparum por meio de técnicas de modelagem por homologia. Além
disso, também integramos a estratégia de LBDD com técnicas de aprendizado de maquina para
construir modelos capazes de predizer possiveis inibidores dessa proteina a partir de
informagBes de moléculas que conhecidamente interagem com homologas humanas dessa
enzima. Dessa forma, além de analisar e estudar a estrutura de um alvo ainda pouco explorado,
propomos a descoberta de novos potenciais inibidores para a PfPI4KIIIS cujo mecanismo de
acdo seja inovador e capaz de trazer luz ao problema de resisténcia atualmente enfrentado com
0s tratamentos convencionais. Finalmente, sera sugerida a validagéo experimental de potenciais
inibidores da enzima PfPI14KIIIp.



2 MATERIAIS E METODOS

2.1 Viséo geral do projeto

Para encontrar potenciais inibidores da enzima PfPI4KIIIgB, foram planejadas duas
triagens virtuais em larga escala concomitantes. A Figura 1 (A) mostra a primeira abordagem,
que se baseou em modelos de aprendizado de maquina, os quais foram treinados a partir de dois
tipos de fingerprints, Extended Connectivity Fingerprint (ECFP) (19) e fingerprints de
interacdo. (20) Ja a segunda, representada pela Figura 1 (B), se baseia apenas no ranqueamento
obtido com a docagem molecular entre as moléculas e a enzima PfPI4KIIIS utilizando-se
diferentes fungdes de pontuacéo.

A predicdo da poténcia dos compostos contra a proteina de interesse vai depender da
informacdo contida nos fingerprints, que serdo os atributos utilizados pelos métodos de
aprendizado de maquina. Esses fingerprints sdo vetores que representam a estrutura quimica ou
propriedades que definem das moléculas em estudo. (17) No caso dos ECFP, temos a
informacao estrutural e dos grupos quimicos da molécula determinada por funcdes de simetria
circular. (17,19) Ja os fingerprints de interacdo carregam a informacdo das interacOes
intermoleculares entre a molécula analisada e os residuos do sitio de ligacdo da proteina que
ela interage, dependendo da docagem molecular. (21) Dessa forma, temos dois tipos de
informacdes diferentes para realizar o aprendizado de maquina e poder escolher o modelo com

melhor capacidade de predicéo.
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Figura 1 - (A) Fluxograma representando a triagem virtual baseada em modelos de aprendizado de maquina para
predizer potenciais inibidores da enzima PfPI4KII11S. (B) Esquema simplificado das etapas necessarias
pararealizar a triagem virtual em larga com base no ranqueamento obtido através da docagem molecular
entre os ligantes e a enzima PfPI4KII1IS.

Fonte: Elaborada pela autora.

2.2 Obtencéo do modelo estrutural da enzima PfP14KlI1 £

Inicialmente, verificamos a existéncia de um modelo estrutural da proteina PfPI4KIIIS
disponivel nos bancos de dados SWISS-MODEL (19) e no ModBase (23), obtidos via
modelagem comparativa de alta resolucéo, e no banco de dados AlphaFoldDB (24), obtido
através de um modelo de aprendizado de maquina baseado em redes neurais. Além disso, como
as estruturas encontradas possuem regides de baixa confiabilidade, também foi predita a

estrutura dessa enzima atraveés do AlphaFold colab notebook (24) com modificacbes na
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sequéncia primaria para obter um modelo melhor a fim de aplicar as técnicas de modelagem in
silico. O notebook usado disponibiliza um modelo de aprendizado de maquina treinado com
uma parte selecionada do banco de dados do AlphaFold, porém, possui a precisdo similar ao
sistema completo do codigo-fonte AlphaFold.

Para a predicéo da estrutura, utilizou-se a sequéncia do gene PF3D7_0509800, presente
no banco de dados PlasmoDB (25), os preditores de dominio, familias e locais funcionais Pfam
(26) e PROSITE (26), a ferramenta de alinhamento local BLAST (27) e a ferramenta de
alinhamento multiplo Clustal. (28) Através do alinhamento local da proteina expressa pelo gene
PF3D7_059800 e o seu alinhamento mdltiplo com as enzimas humanas homologas a
PfPI4KI1I1B, que possuem maior resolugdo no banco de dados RCSB PDB (29), foram
selecionados dominios importantes para a proteina. Além disso, tais dominios também foram
escolhidos considerando atribui¢Bes sobre a sua importancia na atividade catalitica da enzima,
resultando em dois dominios principais: n-lobe proximal e dominio catalitico. (30) Outra
métrica usada para a constru¢cdo do modelo estrutural PfPI4KIIIB foi a comparacdo das
sequéncias desses dominios com a estrutura encontrada no AlphaFoldDB, levando em conta a
sua acurécia na predi¢do em cada um desses trechos. Para isso, utilizou-se o indice pLDDT (do
inglés, predicted Local-Distance Difference Test) (24) que indica o qudo confiavel foi a
previsdo do modelo gerado. Verificou-se que, entre os dois dominios citados, existe uma regido
de 437 residuos (843-1279) com baixo pLDDT. No entanto, como estruturalmente esses
dominios estdo préximos na proteina humana (PDB ID: 4DO0L), substituimos essa regido por
uma al¢a de 10 glicinas. A sequéncia final da proteina PfPI4KII1S esté4 indicada no Apéndice
A.

2.3 Dinamica molecular para validar a modelagem da estrutura tridimensional

Realizamos 100 ns de simulagdes de dindmica molecular usando o pacote de programas
AMBER19 (31) para avaliar a estabilidade da estrutura predita pelo AlphaFold colab notebook.
Inicialmente, todos os hidrogénios foram adicionados com o software reduce (32), pertencente
ao pacote AmberTools. (31) A proteina foi parametrizada utilizando o campo de forca AMBER
FF14SB. (33) A estrutura foi envolvida por uma caixa cubica de agua (e.g., TIP3P (34)) com
18 A de distancia entre a proteina e a borda da caixa. Além disso, um fon de sédio foi adicionado

ao sistema para manté-lo eletronicamente estavel.
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2.4 Recuperacdo de moléculas com atividade biol6gica conhecida contra homologos de
pfpidk e analise do espago quimico

A partir da base de dados ChEMBL, selecionamos compostos com atividade inibitéria
contra as enzimas ortologas da PfPI4K. Os filtros utilizados foram: as atividades bioldgicas
foram medidas e reportadas como valores de 1C. ou K;; o operador de atividade bioldgica foi
“="; a atividade bioldgica foi padronizada como “nM?”; o tipo do alvo foi “SINGLE PROTEIN”;
ndo houve comentéarios em relacdo a validade da atividade biolégica nem sinalizadores de
duplicacdo de dados; ndo conter as palavras-chaves ‘inconclusive’, ‘not determined’,
‘undetermined’, ou ‘approximate value’ no campo de comentarios para a atividade bioldgica
(‘activity comment’). Para determinar a poténcia de cada molécula, usada como classe no
aprendizado de méaquina, foram usados os dados presentes no operador atividade.

A andlise do espaco quimico foi feita a partir da biblioteca Python ChemPlot. (35) A
partir de um conjunto de moléculas e suas caracteristicas estruturais, esse pacote permite a
visualizacdo bidimensional do espaco quimico utilizando trés tipos de algoritmos de reducéo
de dimensionalidade: PCA, t-SNE e UMAP. A fim de comparar a dimensao do espacgo quimico
delimitado pelas moléculas recuperadas, também fizemos um banco de moléculas que
interagem com proteinas diversas. Para conferir diversidade estrutural as moléculas,
escolhemos enzimas de funcdes diferentes, e, para isso, buscamos no ChEMBL alvos que
possuam o primeiro digito do cddigo EC (do inglés, Enzyme Commission Number) diferentes
uns dos outros. Também utilizamos o coeficiente de Tanimoto para calcular a similaridade
molecular entre 0os compostos do banco de dados e agrupamos as moléculas em clusters

utilizando-se o algoritmo Butina da biblioteca Python RDK:it. (36)
2.5 Docagem molecular de inibidores de hP14KlI1 4

A docagem molecular foi realizada utilizando-se 0 DOCK 6 (versdo 6.9). Essa é uma
extensdo do DOCK 5 com amostragem e pontuacdo aprimoradas que também utiliza algoritmo
de busca sistematica para encontrar a melhor pose do ligante, explorando a flexibilidade do
ligante atraves da sua fragmentac&o. (37)

Antes de realizarmos a docagem molecular, as estruturas da proteina e dos ligantes
foram preparadas removendo os ions, outros cofatores e moléculas de agua ndo estruturais, ou
seja, ndo conservadas em outras estruturas cristalograficas e localizadas fora do sitio de ligacéo;

foram adicionados atomos de hidrogénios com a ferramenta AddH do software Chimera (38),
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considerando o pH fisiologico 7,4; foram atribuidas cargas parciais através do modelos AMBER
FF14SB (33) e AMI-BCC (39) aos residuos da proteina e aos ligantes, respectivamente.

Em seguida, realizamos a minimizacao de energia da estrutura utilizando-se o software
Open Babel. (40) Por fim, geramos esferas dentro do sitio de ligacdo do receptor com o
programa sphgen do DOCK 6. (41) O sitio de ligacdo foi definido com base no ligante
cristalogréfico da estrutura (PDB ID: 4DOL). Além disso, utilizamos o programa Showbox do
DOCK 6 para delimitar uma caixa ao redor das esferas com uma margem de 10 A em todas as
direcdes e utilizamos o programa GRID do DOCK 6 (42) para calcular a energia das interacdes
entre um atomo ficticio e o receptor dentro da caixa definida anteriormente. Os ligantes foram
tratados como flexiveis de acordo com o protocolo padrdo de acoplamento flexivel (FLX)
descrito em. (37)

O protocolo de docagem foi entdo avaliado a partir da estratégia de redocagem
(redocking), que consiste em reposicionar o ligante cristalografico do complexo receptor-
ligante nas coordenadas originais do receptor usando um programa de docagem. Esse
experimento é comumente empregado com a finalidade de avaliar a precisao de uma funcéo de
pontuacdo de um programa de docagem em relacao as suas capacidades de reproducéo de poses
conhecidas. Geralmente, as poses preditas sd8o comparadas as suas respectivas poses
cristalograficas com base no desvio quadratico médio (RMSD) entre elas.

Para realizar a docagem também foi utilizado o software GOLD. (43) Diferente do
DOCK 6, 0 GOLD (Genetic Optimization for Ligand Docking) prediz o0 modo de ligacdo dos
ligantes com base em algoritmo genético, explorando a flexibilidade do ligante através de
populacbes conformacionais das moléculas analisadas. (44) A validacdo do protocolo de
docagem foi feito através da redocagem do ligante cristalogréafico disponivel na estrutura do
homologo humano da PfPI4KIIIS (PDB: 4DOL), cujas poses foram avaliadas com base em
todas as fungdes de pontuacdo disponiveis no GOLD (Goldscore, Chemscore, CHEMPLP e
ASP). Além disso, também foi utilizada a funcdo Chemscore parametrizada para docagem
molecular em quinases.

Neste trabalho, o estudo de redocagem foi realizado utilizando-se a estrutura
cristalogréfica a enzima hPI4KIlIS (PDB ID: 4DO0L). As poses preditas pelo programa de
docagem foram comparadas com as poses cristalograficas utilizando-se o valor de RMSD
corrigido por simetria. Tal como em (37), caracterizamos os resultados da docagem tal como
se segue: se a pose de maior pontuacéo estiver até 2 A de distancia (medida em RMSD) da pose
cristalogréfica, consideramos o resultado valido; no entanto, se a pose correta (proxima a pose

cristalogréfica) for amostrada, mas ndo pontuada como a melhor, consideramos que houve uma
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falha de pontuacéo da pose; finalmente, se a pose correta ndo tiver sido amostrada dentre as 100
conformacGes geradas durante a docagem, consideramos que houve uma falha de amostragem.

A soma desses trés casos possiveis sera sempre igual a 100%.
2.6 Validagéo do protocolo para a triagem virtual

Primeiramente realizamos as docagens moleculares entre moléculas com atividade
definida contra as enzimas hPI14KIIIg recuperadas do banco de dados ChEMBL. Para tanto,
utilizamos a estrutura tridimensional dessa enzima resolvida por cristalografia de raios X (PDB
ID: 4DOL). Para cada uma das moléculas recuperadas, também foram geradas 50 decoys pelo
servidor DUD-e (45), que sdo moléculas com caracteristicas fisico-quimicas semelhantes as
moléculas de atividade conhecida, porém, que sdo topologicamente diferentes. Isto €, séo
moléculas que potencialmente ndo se ligam ao sitio ativo da enzima hPI4KI113, apesar de suas
similaridades fisico-quimicas as moléculas conhecidamente ativas. (45) Além disso, foram
feitas as docagens moleculares entre os decoys e a enzima hPI14KIIIS.

Dessa forma, a partir da funcdo de pontuacdo das moléculas docadas, foram feitos os
graficos de curva ROC (do inglés, receiver operation characteristic) e calculou-se a taxa de
enriquecimento entre as moléculas recuperadas, consideradas ligantes da enzima hPI4KIIIg, e
0s seus decoys. Para avaliar se o protocolo de docagem foi capaz de priorizar os ligantes com
atividade bioldgica definida em detrimento dos decoys, utilizamos valores maiores ou iguais a
0.8 como ideais para as métricas AUC (do inglés, area under the curve) e enriquecimento. Essa
ualtima métrica calculada tem como objetivo identificar se, dentre as milhares de moléculas
analisadas, encontramos aquelas que realmente se ligam ao sitio ativo nas primeiras posicoes.
(46) Isto, pois, ao final de uma triagem virtual, normalmente, selecionam-se as primeiras
moléculas para avaliacdo experimental. Logo, idealmente, espera-se que todas as moléculas
ativas sejam ranqueadas nas primeiras posi¢des, o que configuraria um sucesso na triagem
virtual. Assim, o enriquecimento é normalmente avaliado nas primeiras fragdes do conjunto de
moléculas (por exemplo, 0.01% ou 1% do total de compostos). Os graficos de curva ROC e
enriquecimento foram gerados pelo Rstudio, utilizando a linguagem de programacdo R, e
através das bibliotecas ROCR e enrichvs.

2.7 Aprendizado de maquina

As técnicas de aprendizado de maquina Random Forest, Gradient Tree Boosting e SVM

(47) foram utilizadas neste projeto para predizer a atividade de compostos desconhecidos em
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relagdo as proteinas homologas da PfPI4KIIIS. O treinamento foi realizado com o método de
validacgdo cruzada K-fold, em que K € o nimero de subconjuntos nos quais o conjunto total de
dados foram subdivididos. Neste trabalho, utilizamos K igual a 5. Para todas as trés técnicas
utilizamos suas implementacdes disponiveis na biblioteca scikit-learn [47] com os parametros
mantidos como padrdo, exceto o numero de estimadores/interacdo que foram definidos como
500. Os modelos foram treinados utilizando como entrada os fingerprints ECFP4 das moléculas

e foram avaliados por meio da métrica acuracia (porcentagem de acertos do modelo).
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3 RESULTADOS

3.1 Modelagem estrutural da enzima PfP14KIIIS

Por meio de estudos que correlacionam a sequéncia, estrutura e funcdo proteica dos
homologos da enzima PI4KIIS (Figura 2, delimitamos dois dominios principais para a
atividade dessa proteina, dominio N-lobe e C-catalitico. Dessa forma, como ambos séo
necessarios para a constituicao do sitio de ligacdo ao ATP, as duas regides foram escolhidas

para compor 0 modelo.

Homo sapiens 128 244 321 406 554 613 816
PI4KIIIp [ N I W |
Plasmodium falciparum 371 486 728 844 1298 1357 1559
PUKIIB | ] = Cl |

Figura 2 - Representacdo dos dominios presentes em P14KII1S de Plasmodium falciparum e de humano com
base em alinhamento de sequéncia e estrutura. Dominio helicoidal em verde, N-lobe em vermelho e
C-catalitico em amarelo.

Fonte: STERNBERG; ROEPE. (30)

Como o algoritmo do AlphaFold utiliza MSA (do inglés, Multiple Sequence Alignment)
nas primeiras camadas da rede neural para fazer a predicdo da estrutura terciaria através da
estrutura primaria (24), existe uma tendéncia a estabelecer uma relacdo estrutural entre
sequéncias homologas. Entdo, como ha uma semelhanca sequencial de 75 % entre 0s residuos
dos dominios de interesse da proteina PI4K humana e plasmodial, podemos usar como
referéncia a estrutura cristalografica humana (PDB I1D: 4DOL) e comparar com o0 modelo gerado
para corroborar com a sua validacao e iniciar os estudos. (30) Os alinhamentos de sequéncia e
estrutural (RMSD de 1,043 A) entre os dominios citados sd0 mostrados nas Figuras 4 e 5,

respectivamente.
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Figura 3 - Alinhamento das sequéncias primarias dos dominios N-lobe e C-catalitico das proteinas PfPI14K, hPI4K
(sequéncia obtida do PDB 4DO0L) e hPI3K (sequéncia obtida do PDB 7MLK) gerado pelo Clustal (28)
e imagem gerada pelo servidor ESPript. (48) A representacdo da estrutura secundaria da PfPI4K é
baseada na predicdo feita pelo AlphaFold. As regifes conservadas estdo delimitadas pelos retangulos
azuis e as regides idénticas estdo coloridas em vermelho. As regifes que correspondem ao sitio ativo
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Fonte: Elaborada pela autora.

Figura 4 - Comparacdo do modelo estrutural gerado para os dominios da enzima PfP14K com seus homélogos
humanos. (A) Representagdo da cavidade delimitada pelo sitio de ligagcdo ao ATP do modelo da proteina
PfPI4K, cujo codigo de cores é determinado pela similaridade do alinhamento linear com as homoélogas
PI4K e PI3K humanas visto na Figura 3, isto é, em vermelho estdo destacados os residuos idénticos,
rosa com similaridade entre 0.7 - 1.0 e branco com similaridade menor que 0.7. (B) Alinhamento
estrutural entre 0 modelo gerado em azul e os dominios N-lobe e C-catalitico da enzima hP14K (PDB:

4DOL) (RMSD de 1.043 A).
Fonte: Elaborada pela autora.
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Além disso, como uma das métricas utilizadas para validar o modelo estrutural € o valor
pLDDT de cada residuo predito, também analisamos a confiabilidade das regifes da proteina
predita para o gene PF3D7_0509800, encontrada no banco de dados AlphaFoldDB. Dessa
forma, selecionamos os residuos proximos dos dominios n-lobe e c-cat que estivessem preditos
com alto pLDDT. Para unir os dominios, foi utilizado uma al¢a formada por 10 residuos de
glicina, por ser um aminoacido flexivel que ndo influenciaria significativamente os campos
eletrostaticos ao seu redor. Ao final, foi obtido um modelo para a estrutura da PfP14KI1113 com
RMSD de 0,78 A em relacdo ao modelo encontrado no AlphaFoldDB e com altos valores de
pLDDT, sendo valido para modelagens computacionais como docagem e dindmica molecular.

Para confirmar que o modelo predito ndo se encontra em um minimo local de energia,
também foi feita uma andlise da estabilidade estrutural do modelo. Na Figura 6 constatamos
flutuagBes significativas da proteina (1 — 4 A) durante a simulag&o. Porém, quando analisamos
o grafico de RMSF (do inglés, root-mean-square fluctuation), observamos que as regides de
loop e alcas foram as que apresentaram maior flexibilidade, ao passo que as regides
correspondentes a cavidade de ligacao (residuos 200 a 290) se mostraram mais estaveis. A Gnica
excecdo, como esperado, foi a regido do motivo p-loop presente no sitio ativo (residuos 103 ao

113) que apresentou maior flexibilidade ao longo da simulagéo.

Figura 5 - Modelos da enzima PfPI4KIIIB. (A) Modelo da PfP14KII18 disponivel no AlphaFoldDB colorido de
acordo com seu pLDDT (per-residue confidence score). Azul escuro =pLDDT > 90 (alta confiabilidade
no modelo predito); azul claro = 90 > pLDDT < 70 (modelo com confiabilidade reduzida); amarelo =
70 > pLDDT < 50 (baixa confiabilidade); vermelho = pLDDT < 50 (baixissima confiabilidade). (B)
Alinhamento estrutural do modelo disponivel no AlphaFoldDB e do modelo predito através da
sequéncia presente no APENDICE A.

Fonte: Elaborada pela autora.
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Figura 6 - Resultado da simulacdo de dindmica molecular do modelo predito. (A) Grafico de RMSD. (B) Gréfico
de RMSF (flutuacdo média de cada residuo durante a simulag&o).
Fonte: Elaborada pela autora.

3.2 Recuperacdo de moléculas com atividade bioldgica conhecida contra homdlogos de

hPI4K e analise do espago quimico

A fim de construir um modelo de aprendizado de méaquina para predizer inibidores
promissores para a enzima PfPI4K buscamos por inibidores conhecidos dessa enzima na base
de dados ChEMBL.. (49)_No entanto, na data de consulta, ndo foi encontrada nenhuma molécula.
Assim, dada a similaridade de sequéncia entre a enzima PfPI4K e suas homologas humanas,
decidimos por assumir que os inibidores conhecidos_para as proteinas homélogas humanas da
PI4K também seriam validos para o alvo desejado. No total, foram recuperadas 5.083 moléculas
da base de dados ChEMBL com atividade bioldgica (IC. ou K)) avaliada contra os alvos
humanos: PI3K ('CHEMBL1075102, 'CHEMBL3268', 'CHEMBL5554" e
'CHEMBL1163120"), PI4K ('CHEMBL1770034', 'CHEMBL2251', 'CHEMBL3667',
'CHEMBL5667' e 'CHEMBL1795194") e PI5SK (‘(CHEMBL1908383' e 'CHEMBL5969").

Para a construcdo de modelos de classificagédo, selecionamos apenas as moléculas cujo
parametro ‘Standard relation” era igual a ‘<, >, ‘<’ ou ‘2’ a fim de
classifica—las como potentes e pouco potentes com base em suas
atividades biolodgicas (IC. ou Kj). Além disso, filtramos as moléculas cujo parametro
‘Standard Unit’ foi igual a ‘nM’ e excluimos as moléculas que possuiam o parametro ‘Standard
relation’ vazio. Apos a aplicagdo destes filtros restaram 1.888 das 5.083 moléculas iniciais.

Considerando que moléculas ativas e inativas proximas ao limiar de 10.000 nM
(pActivity = 5) podem ser estruturalmente similares, o que acarretaria um enviesamento dos

modelos de aprendizado de maquina, também criamos um banco de dados em que excluimos
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as moléculas com atividade considerada intermediaria. Para isso, consideramos como potentes,
as moléculas com ‘Standard value’ £ 1.000 nM (pActivity 2 6), intermediarias
com 1.000 nM < ‘Standard value’ < 10.000 nM (5 < pActivity < 6) e néao
potentes com ‘Standard value’ > 10.000 nM (pActivity < 5). Desse modo, obtivemos 386

moléculas potentes, 486 ndo potentes e 1.016 intermediérias. Logo, obtivemos um conjunto de

dados cuja proporcéo de moléculas potentes e ndo potentes € 44 % e 56 %, respectivamente.
A B

1000 4 B pActivity < 5

B 5 <= pActivity > 6
pActivity <= 6

800

600 q

400

Quantidade de moléculas
Quantidade de moléculas

200 1

6 7
Potencia (pActivity)

T
Nao potente Indeterminado Potente
Atividade binaria

Figura 7 - Andlise da atividade do banco de dados de moléculas que interagem com homdélogos humanos de PI4K.
(A) Histograma do -log(ICso ou Kj). (B) Histograma da classificacdo das moléculas em ndo potentes,
intermediarias e potentes.

Fonte: Elaborada pela autora.

Para verificar se essas moléculas sdo representativas do conjunto de dados, analisamos
0 espaco quimico ocupado pelas moléculas com o auxilio de métodos de reducdo de
dimensionalidade. (35) Além disso, para confirmar se esse espaco delimitado pelas moléculas
recuperadas é amplo o suficiente, também analisamos o0 espaco quimico com moléculas
estruturalmente diversas que interagem com proteinas diferentes. Assim, a partir da Figura 8,

observamos que as moléculas de interesse estdo bem distribuidas no espago quimico.
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Figura 8 - Representacdo do espago quimico das moléculas do bando de dados construido. (A) Espago quimico
delimitado por moléculas com atividade bioldgica determinada para diferentes enzimas. (B) Espago
guimico delimitado pelas moléculas do banco de dados que interagem somente com as proteinas
homélogas a Pl4K.

Fonte: Elaborada pela autora.

Quando analisamos o coeficiente de Tanimoto entre as moléculas (Figura 9), vemos
também que as moléculas ndo sdo estruturalmente similares nessa métrica, em que valores

distantes de 1 representam moléculas diferentes.
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Figura9 - Representacdo da similaridade entre as moléculas por dois métodos diferentes. (A) O histograma
apresenta os coeficientes de Tanimoto de cada par de moléculas no banco de dados, cuja média é 0,23.
(B) Quantidade de moléculas que compde cada um dos 336 clusters formados por moléculas que
possuem distancia minima de 0,2 através do algoritmo Butina da biblioteca Python RDKit.

Fonte: Elaborada pela autora.

Utilizamos também o algoritmo Butina para agrupar as moléculas de acordo com um

limiar que delimita a distancia euclidiana minima entre as moléculas e os representantes de cada
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cluster (moléculas). Foram testados varios limiares para 0 maximo de dissimilaridade entre as
moléculas e aquela que melhor separou os clusters foi o limiar de 0,2. Assim, obtivemos 336
clusters: 77 com 1 molécula, 97 com mais de 5 moléculas, 11 com mais de 25 moléculas e 1
com mais de 100 moléculas. Tal diversidade quimica € crucial para a constru¢do de modelos de
aprendizado de maquina com alta capacidade de generalizagdo. Assim, é possivel ver que as
moléculas presentes no banco de dados séo diversas, contribuindo para um melhor aprendizado

do modelo de classificacdo para a atividade.
3.3 Docagem molecular de inibidores de P14KII1S e seus decoys

Antes de realizar a triagem virtual, validamos o protocolo de docagem com poses e
ligantes conhecidos. Para isso, foram feitas a re-docagem do ligante cristalografico e a analise
da curva ROC e do enriquecimento feitos a partir de funcdes de classificagcdo das docagens de
ligantes conhecidos da enzima PI4KI1115 (319 moléculas) e 50 decoys para cada um deles. Como
algumas moléculas sdo da mesma classe, tiveram decoys gerados que foram repetidos. Assim,
foram gerados somente 14729 decoys, totalizando uma média de, aproximadamente, 46 decoys
por ligante.

As redocagens foram feitas utilizando-se os programas DOCK 6 e GOLD, que possuem
estratégias diferentes para a identificacdo da melhor pose. O DOCK 6 utiliza 0 método de busca
sistematica, que fragmenta o ligante e explora os graus de liberdade da molécula no sitio ativo
de forma a combinar esses fragmentos até a reconstrucdo total da molécula. J4 0 GOLD, utiliza
algoritmo genético como metodo de busca para encontrar de forma estocéstica as melhores
poses a partir de populacdes de conformacdes, mutacdes e combinag6es dos graus de liberdade.

Para ambos os algoritmos, encontramos a pose cristalografica do ligante nas docagens
(RMSD < 2 A). Porém, as func@es de pontuacdo do GOLD (e.g., chemscore kinase, chemPLP,
chemscore) tiveram maior sucesso em classificar poses com menor valor de RMSD do que a
funcdo do DOCK 6 (dockscore). Todas as funcbes de pontuacdo utilizadas no GOLD
classificaram a pose com o menor RMSD como a melhor pontuagdo, mas a funcdo
chemscore.kinase.params foi escolhida para continuar os estudos para a triagem virtual. Isso
porque esta funcdo foi parametrizada especificamente para triagens virtuais de quinases (Figura
10).
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Figura10- Redocagem molecular do ligante cristalogréfico da proteina 4DOL (N-(5-(4-cloro-3-(2-hidroxi-
etilsulfamoil) - feniltiazol-2-il) -acetamida). (A) Melhor pose obtida com 0 DOCK 6 (dockscore de
-54 e RMSD de 7.9 A). (B) Segunda melhor pose obtida com 0 DOCK 6 (dockscore de -48.4 e
RMSD de 1.0 A). (C) Melhor pose obtida com o GOLD a partir da funcdo de pontuacio
chemscore.kinase.params com RMSD de 1.1 A.

Fonte: Elaborada pela autora.

Para a validacdo final do protocolo, foram utilizadas 319 moléculas recuperadas do
ChEMBL que apresentam atividade bioldgica contra o alvo CHEMBL3286. Nessa selecéo,
aplicamos os seguintes filtros: ‘Standard relation’ igual a ‘=" e ‘Standard Unit’ igual a ‘nM’.
Também utilizamos o servidor DUD-E para gerar no maximo 50 decoys para cada uma dessas
moléculas. Como resultado, obtivemos um total de 14.732 decoys Unicos. No entanto, a area
sob a curva ROC (AUC) foi de 0,47 (Figura 11, ou seja, a fungdo de pontuagdo teve uma
acuracia similar a um algoritmo aleatério (AUC = 0,5). Além disso, o enriquecimento de
aproximadamente 12 moléculas (0,5% do total de moléculas docadas — 753 moléculas) também
confirma a dificuldade de se encontrar possiveis inibidores da P14K através desse método. Esse
resultado com baixa acurécia e poder de classificacdo das moléculas pode ser devido a falhas
no protocolo ou até mesmo a baixa resolucio da estrutura da enzima PDB 1D 4DOL, de 2,94 A.
Essa ultima variavel pode estar relacionada com a incerteza da localizacdo de residuos chaves
para a interacdo de alguns dos ligantes, que adquirem poses desfavoraveis na docagem
molecular quando em relacdo a sua pose real no sitio de ligagdo. Assim, decoys podem ter poses

mais favoraveis, obtendo melhor classificacdo com as fungdes de pontuacao.
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Figura 11 - Resultado da validag&o para a triagem virtual. (A) Curva ROC. (B) Curva ROC semilogaritmica.

Fonte: Elaborada pela autora.

3.4 Aprendizado de maquina com fingerprints gerados

Para treinar os modelos de predicdo de atividade (Activity ou pActivity) das moléculas
em relacdo as proteinas homdlogas de hP14K, foi utilizado o banco de dados da se¢éo 3.2 e 0s
algoritmos Random Forest, Gradient Tree Boosting (GBoost) e Support Vector Machines
(SVM) com 4 fungdes diferentes de kernel. Os resultados de cada algoritmo de classificagéo
sdo apresentados na Tabela 1. Como métrica de qualidade utilizamos: acuracia, representando
o desempenho geral do modelo; especificidade, mostrando a cobertura das amostras negativas;
e AUC.

Tabela 1 - Resultados dos algoritmos de aprendizado de maquina para a classificagdo de compostos ativos e
inativos contra a enzima hPI3K. Os modelos foram treinados utilizando-se fingerprints ECFP4 com

2.048 bits.

Algoritmo Acurécia Sensibilidade AUC
Random Forest 0,75+ 0,06 0,6+0,2 0,82 £0,09
Gradient Tree Boosting 0,74 +0,08 0,7+£0,2 0,80 + 0,07
SVM (kernel = rbf) 0,75+ 0,09 0,7+0,2 0,85 + 0,07
SVM (kernel = linear) 0,74 + 0,08 0,7+0,1 0,82 + 0,07
SVM (kernel = poly) 0,74 £ 0,09 0,7+0,2 0,85+ 0,04
SVM (kernel = sigmoid) 08+0,1 0,7+0,2 0,83+ 0,08

Fonte: Elaborada pela autora.

Observamos que as moléculas foram bem classificadas pelos trés tipos de algoritmos e

que os resultados foram equivalentes entre si, ndo apresentando diferenca significativa. Além
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disso, a sensibilidade mede a propor¢do de moléculas preditas como ativas que sdo de fato
ativas contra as proteinas, sendo extremamente importante para a triagem de diversos ligantes
com atividade desconhecida. Nesse sentido, tivemos uma predicao de aproximadamente 75%

dos ligantes.
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4 CONCLUSOES E CONSIDERACOES FINAIS

O estudo de moléculas com mecanismos de acdo diferentes dos farmacos com atividade
antiplasmodial disponiveis € de extrema importancia para a eliminacdo da malaria. Nesse
trabalho, procuramos explorar a estrutura de um alvo validado para procurar novos inibidores
com estruturas diversas que potencialmente apresente modos de ligagdo inovadores. Para isso,
foi construido um modelo estrutural da proteina PfPI4KIIIS através do algoritmo AlphaFold
v2.1.0. A sequéncia primaria utilizada para fazer a predicéo foi definida de acordo com a analise
dos dominios funcionais e a estrutura resolvida da proteina homéloga humana P14KII118. Para
validar essa estrutura, utilizamos a métrica pLDDT, a comparacao por alinhamento estrutural
com a proteina hP14KI118 e dindmica molecular. Todas as estratégias de validacdo mostraram
que, além de estavel, a estrutura predita possui uma alta confiabilidade.

Como ndo possuimos bancos de dados de moléculas inibidoras da PI4K de Plasmodium
spp., utilizamos as moléculas recuperadas do ChEMBL que possuem atividade biolégica
definida contra a enzima hPI4KIIIg (PDB ID: 4DOL). Apesar de conseguirmos validar a
docagem molecular através da reproducdo (redocking) da pose original do ligante
cristalogréfico, ndo foi possivel validar a triagem virtual com base nos ligantes conhecidos e
decoys. Tal erro de validacdo pode ter ocorrido devido a baixa capacidade das funcdes de
pontuagdo em priorizar moléculas ativas em detrimento de decoys ou ao protocolo de triagem
virtual estabelecido. Assim, em trabalhos futuros, planejamos realizar novos experimentos para
determinar se o erro de validacao ocorreu devido ao protocolo utilizado.

Ja os modelos de aprendizado de maquina treinados utilizando-se somente a estrutura
das moléculas que interagem com os homologos da enzima P14K apresentaram alta acuracia.
Considerando que as moléculas utilizadas para o treinamento apresentaram diversidade
estrutural, acreditamos que o modelo obtido sera util para a descoberta de novos inibidores a
partir de um banco de moléculas cuja atividade contra a enzima PI14K sejam desconhecidas.
Portanto, 0s proximos passos serdo realizar uma triagem virtual com os modelos de aprendizado
de maquina agrupar as moléculas ativas por similaridade estrutural e selecionar as moléculas
representantes de cada cluster que possuam maior diversidade estrutural em relacdo as
moléculas obtidas da base de dados ChEMBL para validacdo experimental em ensaios contra
0 parasita padronizados em nosso laboratério. Além disso, pode-se ainda realizar uma analise
visual do modo de ligagcdo dos compostos selecionados via docagem molecular e uma analise
de estabilidade dos complexos proteina-ligante preditos através de dinamica molecular.
Projetos futuros utilizardo esse modelo estrutural para aplicar diferentes técnicas SBDD para
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encontrar novos inibidores. Também pretendemos expressar de forma heter6loga a proteina
plasmodial, obter a estrutura experimental e padronizar um ensaio de atividade com a PI4K

para possibilitar a triagem in vitro de moléculas encontradas computacionalmente.
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APENDICE A

Sequéncia usada para construir o modelo.

>PfP14K _nlobe_catalitico
KQRRCDYFSLLNNFINLLISVSNLLAAEPDIDLRNELLRRFIYSLNSWMNMRRCIVACC
ENIFAMTGLCIPLESMSSSTFNHDTNNRLSYNNLQILHFNNEECKIFFSKKRAPYLLMF
EVAGGGGGGGGGGELFEEKKKRIRKVSPYGKLKTWDLKCVIIKGGDDLRQELLASQ
LIKQFKIIFENAGLPLWLRPYEILVTGSNSGIIEYVNDTCSVDSLKRKFGADSISTIFNIV
FSDYIFEAKKNFIESHAAYSLISYLLQVKDRHNGNLLLDSDGHLIHIDYGFMLTNSPGN
VNFETSPFKLTQEYLDIMDGEKSDNYEYFRRLIVSGFLEARKHSEEIILFVELMMPALK
IPCFANGTQFCIESLKERFMTNLTVDVCIQRINALIEASINNFRSVQYDYFQRITNGIM





